On p-class groups of relative cyclic p-extensions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-class Groups of Certain Extensions of Degree P

Let p be an odd prime number. In this article we study the distribution of p-class groups of cyclic number fields of degree p, and of cyclic extensions of degree p of an imaginary quadratic field whose class number is coprime to p. We formulate a heuristic principle predicting the distribution of the p-class groups as Galois modules, which is analogous to the Cohen-Lenstra heuristics concerning...

متن کامل

Extensions of p-compact Groups

The classification of short exact sequences of p-compact groups and of rational isomorphisms of not necessarily connected p-compact groups is discussed.

متن کامل

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

On Z p - embeddability of cyclic p - class fields ∗

It is investigated when a cyclic p-class field of an imaginary quadratic number field can be embedded in an infinite pro-cyclic p-extension. Résumé. On donne des conditions pour qu’un p-corps de classes cyclique d’un corps de nombres quadratique imaginaire soit plongeable dans une p-extension pro-cyclique infinie. Consider an imaginary quadratic number field K. Let p be an odd prime number, and...

متن کامل

EXTENSIONS OF REPRESENTATIONS OF p-ADIC GROUPS

We calculate extensions between certain irreducible admissible representations of p-adic groups. To Hiroshi Saito, in memoriam

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 2021

ISSN: 0003-889X,1420-8938

DOI: 10.1007/s00013-021-01619-8